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Absbact In the framework of a generalid statistical mechanics introduced recently by 
Tsallis, we derive a generalized form of the fluctuation-dissipation theorem, which expresses 
a relation behveen extended susceptibilities and equilibrium fluctuations. To achieve this, 
we consistently propose a generalized functional form for the instantaneous distribution 
function. The present theorem recoven as particular cases the corresponding generalized 
relations already obtained for the specific heat in terms of the generalized energy fluctuations 
and for the suseeptibility of a magnetic system under the action of a uniform magnetic 
field. 

1. Introduction and general considerations 

A generalized entropy has been recently introduced by Tsallis [ 11. This entropy is given 
by the expression 

where k is a conventional positive constant,  ER characterizes the generalization, p i  is 
the probability of occurrence of the ith microstate of the system and N is the total 
number of such microstates. The q+l  limit yields the, standard Shannon entropy 

S=-k. 1 piln(pj). (2.) 
i -  I 

Preserving the standard variational principle, Tsallis [ 11 established the microcanon- 
ical and & o n i d  generalized distributions. For the microcanonical ensemble, i.e. in 
the case of equiprobability ( p t =  l/N), 

which recovers, for q= 1, the Boltzmann expression S=kB In N. The generalized equilib- 
rium canonical distribution is given by [ I ,  2.1 
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with 
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N 
I / ( ]  -4) zq= c -P(1 -q)e;l 

i- I 

(with E; the energy of the ith microstate and p l/kT, T being the temperature). 
This generalization of Boltzmann-Gibbs statistics leads to a thermodynamics [2] 

which naturally recovers the standard one in the q+ 1 limit. 
The generalized statistics has recently been applied with success [3] to the study of 

stellar systems. Specifically, it overcomes the well known Boltzmann-Gibbs statistics 
inability for giving finite mass in the polytropic spheres model (as discussed by 
Chandrasekhar and others). In other words, the non-extensive character of the Tsallis 
entropy seems to be an essential ingredient for recovering finite mass, as physically 
expected. 

Since then, the generalized statistics have been the subject of much work, and other 
generalizations followed (see [4]-1131 (in [13] another application of the Tsallis entropy 
was found: q was connected with the fractal dimension associated with the d- 
dimensional Levy flights)). 

Following this line, our purpose here is to relate the fluctuations of appropriate 
variables in the generalized statistics to their corresponding generalized ‘susceptibilities‘. 
We intend to generalize, in this way, the fluctuation-dissipation theorem, which plays 
an important role in the theory of thermodynamic fluctuations (see 1141). We recall 
briefly the standard relations which lead to this theorem. 

Consider a macroscopic_sys;em in equilibrium interacting with reservoirs associated 
to the extensive variables Xo, XI,  . . . ,Zs (which undergo continual macroscopic AUG 
tuations) and restrictive with respect to the extensive vajables X,, I ,  . . . , X, (which 
remain constant). The circumflex above Xk indicates that Xk is an instantaneous fluctu- 
ating value. The intensive parameter Fk characterizing the reservoir associated to Xk is 
~ 4 1  

a.? 
Fk=- 

ax;, 
(r  indicates the reservoir), 

The probability that_Xo will be found in the range_&o, that 8, will be found in the 
range d,?, . . . and that X, will be found in the range du, is defined as WdXo &, . . . Us, 
where Wis the statistical distribution function for the fluctuating variables. As is well 
known [14], the functional form of Wis postulated to be 

where ka is the Boltzmann constant, b is the ‘iptantaneous entropy’ 1141 of the system 
and s[Fo,. . . , FJ is the maximuq value of S-&.OF~&. In [I41 it is arguefl that 
S[&, . . . , PSI is identical to the Legendre transform of the equifibrilrm entropy; this 
argument also leads to the useful relation 

as -=-X,. (7) 

G is a normalizing constant such that jW(& . . . , 8J &a &, . . . &$= 1 
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In this way the average (equilibrium) value of % is 

k -  z ? k w ( i O , .  ..,is) & O & t .  . . &s -J  
(notice that this is a temporal average). 

If SA’, denotes the deviation of x k  froin x k ,  

62, E ( i k  -xk) 

a typical second moment of the distribution W is written 
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In [I41 it is demonstrated that the functional form of the distribution function W 
gives rise to the fluctuation-dissipation theorem, which reads (for the second moments) 

where aX,/aFk is the ‘susceptibility’ of X j  under the action of the ‘force’ Fk. 

2. The generalized fluctuation-dissipation theorem 

Now we will look for a suitable generalization of equations (6)-( 1 I). 
A crucial point is the generalization of equation (6) for the statistical distribution 

function W. W can be seen as the probability density of an instantaneous macrostate, 
which is proportion& to the number N of microstates associated with this macrostate. 
From equation (3) we obtain 

N =  [ 1 + (1 -4) - T-,’ (12) 

which generalizes the relation N=eS’“ valid for q= 1. Then we consistently propose 
for W, the following functional form: 

where, similarly as before, i, generalizes t_he ‘instanta?eous entropy’, Fk= and 
S,[Fo, . . . , FJ is the maximum value of S,-Ci=:=o F&. r;b, is determined by the nor- 
malization condition 

Let us now introduce the ‘q-average’ of the extensive thermodynamic variable ik: 
n 
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which can also be written as 
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x * , E ( q - ' f k ) l 3  w ~ - ' ~ k w q d , ? O . . ~ d . ? s .  (16) 

This form enlightens the q-exponect used in equation (IS), since in the q-generalization 
the natural variable is W:-'Xk=Xkq [Z. 6, 11, IS]. Therefore, it is natural to define 

(17) 

s 
6ikpE wq p-I x k - x k q .  - 

Notice then that 

(6kp)f= (&kkq)Wq&O.. .&$=o. (18) 

We also notice that if the important variable i s i k q & ~ ~ - l ,  then the generalization 
s 

of equation (7) is written as 

.., ., . , ,. ..., . . . , , , , , , , ,.. 

Now we focus our attention on the following second moment of W, : 

(6ijq 6 f k q ) l =  6%q 6ikq wq &O . . . eS (20) s 
To carry out this integration we first observe that equations (13) and (19) imply 

and using equation (17), 

Equation (20) can now be written as 

hence 

The first integral vanishes since <S&,)l =O. Then we have 
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using equation (14) and the fact that the fluctuating value tj does not depend on Fk. 

Evaluating the derivative a W;-'/aFk we obtain 

and the integral in equation (25) can be written as 

- 
= (1 -4) 6 . ? k q e - ' i j w q  d . f O .  . . dx, i 

s =(1-q) 6 j k q i j q w q d 2 0 .  . . d z ? s .  (27) 

Subtracting from equation (27) the integral (1 -4) 6&,xj,Wq &O . . . eS (which is 
zero because of equation (IS)), equation (25) becomes 

Finally, we have 

which is the generalized form of the flu_ctua$on-$ipation theorem (equation (1 1)). 

((6&)')1, measures the magnitude of the _fluctuations of 
S i q =  W z - ' T - X q ( X q = ( i ) , )  and since ( X ) , = ( W z - l i l ) ,  we can write 

We remark that in the simple case xk=xjzx. the left-hand side o,f equation (29), 
Wz-'X. Recalling that 

(( Siq)'), = (( w;- ')'ii - w;- Iixq -x, wz- ' i+x,x,>, 
= (( W ; - I i y ) ]  -( w;-l i ) ;  (30) 

or alternatively 

3. Applications 

We will now illustrate expression (29) for two different situations, namely for the specific 
heat of a thermal system [I61 and for the susceptibility of a magnetic system in the 
presence of an external uniform magnetic field H [17] (C Tsallis, personal 
communication). 
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In [I61 it was shown that the generalized specific heat is given by the relation 

where U, is the generalized internal energy [Z]. Using the equations (4a) and (46) for 
the canonical distribution functions, and by performing ensem6Ie averages, da Silva ef 
d obtained the following expression for C,: 

where cj and pi are the quantities already defined. Equation (33) can be alternatively 
written as 

sincep?=pi/p,!-q and 1 -p(l -q)&i=(piZq) l -q  (from equation (4a)). Inspecting equa- 
tion (34). we recognize a natural variable, E/ [~ (E) ] ’ -~ ,  and q=l  ensemble averages 
corresponding to the fluctuation of this variable. Equation (34) can then be written as 

Now to compare this expression with equation (29) we must identify temporal and 
ensemble averages, i.e. we must assume the ergodic hypothesis. In this way, Uq= ( k ) q ,  k 
being an instantaneous value of the energy of the system. The normalization condition 
(equation (14)) and ergodicity imply that 

1 
(36) 

We also see that the fluctuations which appear in equations (35) and (29) are identical 
averages, i.e. 

n 
z, 0, - 

Recalling that the reservoir parameter associated with U, is F= 1/T ,we finally identify 
equation (35) as a particular case of equation (29). 

As a second example, we consider a magnetic system of N spins St in an external 
uniform magnetic field H. In this system, the generalized isothermal susceptibility is 
defined as 

where M q = ( F ) q = ( E E l  Si),. Tsallis [ 171 (C Tallis, personal communication) proved 
that 
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or equivalently 

In a similar way to that of the first example, the above expression is readilzidentified 
with a particular case of equation (29). In the present system, M,=(S) , ,  S being an 
instantaneous value of the magnetization of the system. The reservoir parameter associ- 
ated with Mf is F=-HIT, and then aM,/aF=TaM,/aH (for an isothermal 
transformation). 

4. Conclusion 

In summary, we have derived a generalization of the fluctuation-dissipation theorem 
using the Tsallis statistics 111. A crncial step is the generalization of the statistical 
distribution function W which describes the mac~oscopicfIuctuations and averages of 
any thermodynamic quantity of a system in equilibrium in contact with reservoirs. We 
recover as particular cases of the theorem the generalized relations already obtained 
for the specific heat in terms of the fluctuations of the total energy and for the magnetic 
susceptibility in terms of the fluctuations of the total magnetization. They both repro- 
duce the well known results in the limit q= 1. 
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